Predicting Popularity of Microblogs in Emerging Disease Event

نویسندگان

  • Jiaqi Liu
  • Zhidong Cao
  • Daniel Dajun Zeng
چکیده

During emerging disease outbreaks, massive information are disseminated through social network. In China, Sina microblog system as the biggest social network provide a novel way to monitoring the development of emerging disease and public awareness. However, only a small percentage of microblogs could wide spread. Therefore, predict popularity of microblogs timely are meaningful for emergency management. In this paper, a Judgment method for popularity level prediction of microblog is proposed and the temporal pattern between cases number and repost number is verified. Repost number is considered to measure the impact of microblogs. To predict the popularity of microblogs, Granger causality test was used to verify the temporal correlation pattern between development of disease and public concern while an Judgment method based on five classical classification models were proposed. Through analyses, case number of emerging disease are Granger causality of the popularity level of microblogs and the regression model got the best result when lag was three. By Judgment method, more than 86 % microblogs can be classified correctly. The proposed Judgment method based on user, microblog and emerging disease information could analysis the popularity level of microblogs speedily and accurately. This is important and meaningful for monitoring the development of future public health event.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling and Predicting Popularity Dynamics of Microblogs using Self-Excited Hawkes Processes

The ability to model and predict the popularity dynamics of individual user generated items on online media has important implications in a wide range of areas. In this paper, we propose a probabilistic model using a Self-Excited Hawkes Process (SEHP) to characterize the process through which individual microblogs gain their popularity. This model explicitly captures the triggering effect of ea...

متن کامل

A Non Parametric Theme Event Topic Model for Characterizing Microblogs

In recent times, microblogging sites like Facebook and Twitter have gained a lot of popularity. Millions of users world wide have been using these sites to post about topics that interest them and also to voice their opinions on several current events. In this paper, we present a novel non-parametric probabilistic model called Theme-Event Model (TEM) for analyzing the content on microblogs. We ...

متن کامل

Predicting Information Popularity Degree in Microblogging Diffusion Networks

Microblogs have rapidly become the most popular means by which people communicate with friends, pay close attention to celebrity at any time. Hence many studies on microblogging networks have been done recently, focusing on information diffusion, popularity prediction, topic detection and more. In this paper, we study the popularity of tweets in microblogging networks and introduce a novel conc...

متن کامل

Bursty event detection from microblog: a distributed and incremental approach

As a new form of social media, microblogs (e.g., Twitter and Weibo) are playing an important role in people’s daily life. With the rise in popularity and size of microblogs, there is a need for distributed approaches that can detect bursty event with low latency from the short-text data stream. In this paper, we propose a distributed and incremental temporal topic model for microblogs called Bu...

متن کامل

Unsupervised and supervised learning to evaluate event relatedness based on content mining from social-media streams

0957-4174/$ see front matter 2012 Elsevier Ltd. A http://dx.doi.org/10.1016/j.eswa.2012.05.068 ⇑ Tel.: +886 7 3814526. E-mail address: [email protected] Due to the explosive growth of social-media applications, enhancing event-awareness by social mining has become extremely important. The contents of microblogs preserve valuable information associated with past disastrous events and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014